Name:	
-------	--

Laws of Exponents Print Activity

1. Use the **Product Law** in the "**Explore It**" mode for the following exercise.

Move the slider bars as directed:

- *m* (purple) to 2
- *n* (orange) to 3
- **x** (red) to 4
- a. Use the above example in the "Explore It" mode to complete the following:

Exponential form	Expanded form
$4^2 \times 4^3$	$4^2 \times 4^3$
$(_)^{2+3}$ (4)	(4)(4)×
(4)—	

b. Complete all the missing parts in the following table:

$x^m \times x^n$	Exponential form	Expanded form
Eg. $3^1 \times 3^4$	$(3)^{1+4} = (3)^5$	$(3) \times (3)(3)(3)(3)$
$5^2 \times 5^{\square}$	$(5)^{2+3} = $	×
(-4) [□] × () [□]	() + =	$(-4)(-4) \times (-4)(-4)$
Eg. $(3)^{-2} \times (3)^4$	$(3)^{-2+4} = (3)^2$	$\frac{1}{(3)(3)} \times (3)(3)(3)$
(-2) ⁻¹ × () ⁻³	(-2) — + — =	×
() ×()	(-6) ³⁺² =	×
$(2)^4 \times (2)^{-3}$	$(2)^{\Box + \Box} = \underline{\qquad}$	×

c. Complete the **Product Law**:

When multiplying like bases you must _____ the exponents.

2. Use the **Quotient Law** in the "Explore It" mode for the following exercise.

Move the slider bars as directed:

- *m* (purple) to 5
- *n* (orange) to 3
- *x* (red) to 4

				3	4	5
			_	3	4	5
X	-	X		3	4	5

a. Answer the following using the above example in the "Explore It" mode:

Exponential form	Expanded form
$4^5 \div 4^3$	$4^5 \div 4^3$
(_) ⁵⁻³	$(4)(4)(4)(4)(4) \div (4)(4)(4)$
(4)□	

b. Complete all the missing parts in the following table:

$x^m \div x^n$	Exponential form	Expanded form
Eg. $3^4 \div 3^1$	$(3)^{4-1} = (3)^3$	$(3)(3)(3)(3) \div (3)$
$5^3 \div 5 \square$	$(5)^{3-2} = $	÷
$(-3)^3 \div (-3)^2$	(-3) =	÷
(-4) [□] ÷ () [□]	()	$(-4)(-4)(-4)(-4) \div (-4)(-4)$
Eg. $(3)^{-4} \div (3)^2$	$(3)^{-4-2} = (3)^{-6}$	$\frac{1}{(3)(3)(3)(3)} \div (3)(3)$
(-2) ⁻¹ ÷ () ⁻³	(-2) =	÷

() ⁻³ ÷() ²	(-6) ⁻³⁻² =	÷-
$(2)^3 \div (2)^{-3}$	(-2) =	

c. Complete the **Quotient Law**:

When dividing like bases you must _____the exponents.

3. Use the **Power of a Power Law** in the **"Explore It"** mode for the following exercise.

Move the slider bars as directed:

- *m* (purple) to 2
- *n* (orange) to 3
- *x* (red) to 4

a. Use the above example in the "Explore It" mode to complete the following:

Exponential form	Expanded form
$(4^2)^3$	$(4^2)^3$
() ^{2×3} ()	() [_] ×() [_] ×() [_]

b. Complete all the missing parts of the following table:

$(x^m)^n$	Exponential form	Expanded form
e.g. $(2^3)^2$	$(2)^{3\times 2} = (2)^6$	(2)(2)(2)(2)(2)
$(5^2)^{\square}$	$(5)^{2\times 2} = $	
$((-3)^3)^2$	(-3) □ × □ =	
((-4) ¹) ²	(-4)□ × □ =	(-4)(-4)(-4)

e.g. (-3) ⁻⁴) ²	$(-3)^{-4\times2} = (-3)^{-8}$	$\left(\frac{1}{-3}\right)\left(\frac{1}{-3}\right)\left(\frac{1}{-3}\right)\left(\frac{1}{-3}\right)\left(\frac{1}{-3}\right)\left(\frac{1}{-3}\right)\left(\frac{1}{-3}\right)$
$((4)^{-3})^{-2}$	(4)□×□ =	
((-2) ⁻¹) ⁻³	()	
$((3)^2)^{-2}$	()	

c. Complete the **Power of a Power Law**:

When raising a power to another power you must _____ the exponents.

4. Use the **Power of a Product Law** in the **"Explore It"** mode for the following exercise.

Move the slider bars as directed:

- *m* (purple) to 2
- y (green) to 3
- x (red) to 4

a. Use the above example in the **Explore It** mode to complete the following:

Exponential form	Expanded form
$(4\times3)^{2}$ $(4)^{1\times2}\times(3)^{1\times2}$ $(4)^{\square}\times(3)^{\square}$	(4×3) ² ()×()

b. Complete all the missing parts in the following table:

$(x\times y)^m$	Exponential form	Expanded form
e.g. (2×4) ³	$(2)^{1\times3} \times (4)^{1\times3} = (2)^3 \times (4)^3$	(2)(2)(2)×(4)(4)(4)
(3×2)	$(\underline{\hspace{1cm}})^{1\times3}\times(\underline{\hspace{1cm}})^{1\times3}=(\underline{\hspace{1cm}})^{\square}\times(\underline{\hspace{1cm}})^{\square}$	×
$(-3\times2)^3$	$(-3)^{1\times3}\times(2)^{\boxed{}}=\underline{}$	×
$(4 \times 3)^{-2}$	$(\underline{})^{1\times-2}\times(\underline{})^{1\times-2}=(\underline{})^{\square}\times(\underline{})^{\square}$	$\left(\frac{1}{4}\right)\left(\frac{1}{4}\right) \times \left(\frac{1}{3}\right)\left(\frac{1}{3}\right)$
(-2×4)	() × () =×	$\left(\frac{1}{-2}\right)\left(\frac{1}{-2}\right)\left(\frac{1}{-2}\right)\times\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)$
(×)	$(-3)^{1\times2} \times (2)^{1\times2} = (-3)^2 \times (2)^2$	×

c. Complete the **Power of a Product Law**:

When finding the power of a product you must ______the exponent outside the bracket by all the exponents inside the bracket.

5. Use the **Power of a Quotient Law** in the **"Explore It"** mode for the following exercise.

Move the slider bars as directed:

- **m** (purple) to 2
- *x* (red) to 3
- *y* (green) to 4

a. Use the above example in the "Explore It" mode to complete the following:

Expanded form

$$\left(\frac{3}{4}\right)^2$$

$$\left(\underline{}\right)^{1\times 2}$$

$$\left(\underline{}\right)^{1\times 2}$$

$$\left(\frac{3}{4}\right)^2$$

$$\frac{(3)^1}{1} \times \frac{(1)^1}{1}$$

b. Complete all the missing parts in the following table:

$\left(\frac{x}{y}\right)^m$	Exponential form	Expanded form
e.g. $\left(\frac{2}{4}\right)^3$	$\frac{(2)^{1\times3}}{(4)^{1\times3}} = \frac{(2)^3}{(4)^3}$	$\left(\frac{2}{4}\right)^{1} \times \left(\frac{2}{4}\right)^{1} \times \left(\frac{2}{4}\right)^{1}$
$\left(\frac{3}{2}\right)^{\square}$	$\frac{(3)^{1\times4}}{(2)^{1\times4}} = \frac{(3)}{(2)} \square$	
$\left(\frac{-3}{4}\right)^3$	$\frac{(-3)}{(4)} = = $ $\frac{(-4)^{1\times 2}}{(-3)^{1\times 2}} = = $	
	$\frac{(-4)^{1\times 2}}{(-3)^{1\times 2}} = \underline{\hspace{1cm}}$	
$ \frac{\left(\frac{-3}{-4}\right)^{-2}}{\left(\frac{-3}{-4}\right)^{-2}} $	$\frac{(-3)}{(-4)} \square = \square$	

c. Complete the **Power of a Quotient Law**:

When finding the power of a quotient you must ______the exponent outside the bracket by all the exponents inside the bracket.

6. Use the **Zero Exponent Law** in the **"Explore It"** mode for the following exercise.

Move the slider bar as directed:

• x (red) to 2

(x)° 2

a. Use the above example in the **"Explore It"** mode to complete the following:

Exponential form

Expanded form

b. Complete all the missing parts in the following table:

$(\mathbf{x})^{0}$	Exponential form	Expanded form
e.g . (4) ⁰	$(4)^0 = $	4/4 =
()0	(y) ⁰ =	<u>y</u> =
(-3) ⁰	() =	<u>()</u> =
	(-6) ⁰ =	<u>()</u> =

c. Complete the **Zero Exponent Law**:

The value of any base to the zero exponent is _____.

7. Use the **Negative Exponent Law** in the **"Explore It"** mode for the following exercise.

Move the slider bar as directed:

- *n* (orange) to -1
- x (red) to 2

a. Use the above example in the "Explore It" mode to complete the following:

Exponential form	Expanded form	
$(2)^{-1}$	$(2)^{-1}$	

b. Complete all the missing parts in the following table:

(x) ⁻ⁿ e.g. (4) ⁻²	Exponential form	Expanded form
e.g. (4) ⁻²	$\frac{1}{(4)(4)} = \frac{1}{(4)^2}$	$\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)$
(5) ⁻³	$\frac{1}{(_)(_)(_)} = \frac{1}{(_)^3}$	
$(-6)^{-2}$	$\frac{1}{(_)(_)} = \frac{1}{(_)} \Box$	

c. Complete the **Negative Exponent Law**:

 $(x)^{-n}$ is defined to be the _____ of $(x)^{n}$. (inverse/opposite/reciprocal)